
Carnegie -MellIon University
PITTSBURGH, PENNSYLVANIA 15213

GRADUATE SCHOOL OF INDUSTRIAL ADMINISTRATION
WIWAM LARIAAER MELLO, FOUNMI

Springf~elg Va. 2215



UNelass~if id

....... " DOCUM"Y CONTROL DATA- R& D

G.raduate School of Industrial Administration Ucasfe

Carnegie-Mellon University21.Gul

HPORT 11LIEk

ON POLAROID INTERSECTIONS

4 1)*: 1I HIP TlIV F No r r v5Tpto ofepot eqnd Irtcuxliv.ilate&
Management 83ciences Reqearch Report April 1972

(,laude-Alain Burdet

77rPR DAioel tE ?a . TOTAL NO. OF PAGES 7L lt. f'hF9

April 1.972 18 _ F 24
40. C ON T rAf O.10P ~A W1 NO, 9a. ORIGIP44TOR-S REPORT NU.MbrRISI

N00014-67-A-.0214-0007
PHODJI:ýT NO. Managemnent Sciences Research Report No. 279

NR 047-048
Oh. OTHER RtEPORT NO(0S) (Any t~~othe ,,ttrb,rnt ttiot mit he es~sigrtted

d. W.P. 95-71-2
010 DItNBUTION 3TATKN4ENT

'~This do'usient has been approved for publi-c r-lease and sitle; its distribution
is unlimited.
) UPPI'kMENI.RV NOTLS 1Z. SPONSORING MILITARY ACTIVITY

Logistics and Mathematical Statistics Br.
Office of Naval Research
Washington, D. C. 20360

-"Polaroid sets and functions have bee.n introduced as a new tool, with
Opplications in non-linear Rrogramming, particularly in quasi-.concave and

Leg~er optimization problems over a l1inearly constrained set of feasible
solutions.

The time polar programmning applies to a general class of non-linear
mathematical programing problems which can be solved by the polaroid
approach. ln integer prograimming polaroids yield non-trivial extensions of
the intersection cut approach.

paper builds ont the properties of polaroid sets (particularly com- %
plete convex polaroids) and focuses on the following intersection problem:

Given a point x belonging to the polaroid set P*, find the inter-
s;ection point u* of a one-dimensional ray u with the boundary of P* 0
u* e (bd P* nlu).

We also present a theoretical comparison of the relative merits of sevoral
currently proposed cutting planes for integer and/or concave progranmiing.

A I ~PA(,,J



LINM ALIK ]

Nou-linear progriaming

Intearsection cut

R -

DDI24"es173(AI)Unclassified-



W.P. 95-71-2

Management Sciences Research Report No. 279
S,,

ON POLAROID INTRSECTIONS

by

Claude-Alain Burdet

April 1972

.11J

b nr puc ltedae"

This report was prepared as part of the activities of the Management Sciences
Research Group, Carnegie-Mellon University, under Contract N00014-67-A-0314-0007
NR 047-048 with the U. S. Office of Naval Research. Reproduction in whole or
in part is permitted for any purpose of the U. S. Government.

Management Sciences Research Group
Graduate School of Industrial Administration D -) 1-

Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213 FI-L-"Li3 1 ;LLL. II

C:
••~~~1 . .51,;

:,t,'• -: •': '• - .•l / • ':',' '• : : •..... •:: •-'•'• • ' •:• i • • .:': -• -- , '-" .- .: .= ": .•' == _- _T

~~~~~~~~~ý LI; l I= • l ii i



VA

F.

ABSTRACT

Polaroid sets and functions have been introduced as a new tool,

with applications in non-linear program•ing, particularly in quasi-concave

and integer optimization problems over a linearly constrained set of feasible

solutions.

The name polar programming applies to a general class of non-linear

mathematical programming problems which can be solved by the polaroid

approach. In integer programming polaroids yield non-trivial extensions of

the intersection cut approach.

This paper builds on the properties of polaroid sets (particularly corn-

plete convex polaroids) and focuses on the following intersection problem:

Given a point x belonging to the polaroid set P find

the intersection point u of a one-dimensional ray u with the

boundary of P u e (bd P lu).

We also present a theoretical comparison of the relative merits of several

currently proposed cutting.planes for integer and/or concave programming.

. . . . . . .. . . . . __., . - .. . . . •. .. , : ,.... .. •.... ... . . . .



On Polaroid Intersections

__0) Introduction by Claude-Alain Burdec

0) Introduction _ __

Polaroid sets and functions have been introduced in [9], where we men-

tioned areas of application in non-linear programming, particularly in quasi-

concave and integer optimization problems over a linearly constrained set of

feasible solutions.

Polaroids can be used to improve the efficiency of the algorithms out-

lined by Hoang Tuy in (16] for the maximization (minimization) of a quasi-

convex (concave) pbiective function over a polyhedral set. They also improve

in a similar way the modified version of this approach, presented in [121 by

Glover and Klingman. Further algorithms outlined in [8] can also be extended

by using polaroids and in [10] we gave the name polar programming to a gen-

eral class of non-linear mathematical programming problems which can be

solved by the polaroid approach.

In integer programming polarolds yield non-trivial extensions of the

intersection cut approach of Balas [1, 11, 5] as indicated in [91; in [7],

a special type of polaroid is presented and we show how it brings under one

roof the enumerative approach of [5,6] and the extension methoj of Balas [2,3] ;

It also illustrates a connection between concave and integer programming, of

a nature different from that of Rajavaghari [14].
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Consider the following general principle for solving the (arbitrary)

mathematical programning problem:

maximixe g(x), subject to xWP

where x is an n vector

P a subset of I

g a real valued function of x ,n.

Method: Construct a (finite) collection of n-dimensional simplices

S , jcJ such that

a) P C = U S
jJJ

b) VjeJ one has

max g(x) W
x(Sf n lP)

where LI is a lower bound:

g (x) , for some x cP

One easily establishes that the optimal solution x of the

original problem is delivered by (finite) search: • e [xi, jeJ]

Jsuch that g () > g (x ) , VjCJ

Particular examples of this general method are described in [81

and [10]; they can be classified as follows:

- cutting plane algorithms (see, for instance, [16], [1],

[11], [5], [6], [7])

- enveloping algorithms (see [10])

- partitioning algorithms (see [101, [16], [4], [12])

One of the basic ingredients in the above general method lies in the

construction of the simplex S , VjeJ i.e., in the determination of its

(n+l) vertices.

S.. ...........
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This paper builds on the properties of polaroid sets (particularly Som-

plete convex poloroids, as defined in [9]) wAich allow for the construction

of simplices Sj possessing the desired properties. We focus our atten-

tion on the determination of the vertices of Si * obtaiined here from the

following intersection problem:

Given a point ; belonging to the polaroid set P (for a

definition see section 1 below), find the intersection point u

of a one-dimensional ray u , with the boundary of P u e (bd P n u).

First we outline the basle methodology which leads to polaroid inter- .1

section algorithms. In a second part we sketch some typical examples of

polaroid functions and sets.

The interested reader is refetred to [3,4,7,12,19] for application areas

and to (9] and [10] for further aspects of the theory ot polaroids. i

I) Definitions

In order to make this report self contained, we briefly reproduce here

some definitions from [9].

Let the polaroid function f = f(x,y) be real valued vith two arguments

x and y which are n-vectors; let P denote a closed set ia n;

Definition 1: The polaroid set P (k) defined by the polaroid function f

with respect to the set P and the parameter k c f(P, Rn)

P (k) =,fy f(x,y) < k , VxePl
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One has the }
Theorem 1: The Polaroid set P (k) is convex Yk

iff the nolaroid function f = f(xy) is

nqasi-convex in y , for all xcP.

Proof: Presented in [9] and omitted here.

Although non-convex polaroid sets P may also be of occasional inter-

est (see [9]), we are mainly concerned here with convex polaroids.

Definition 2: Consider the point x (k) and a vector a e ; we

define the ray u , as the following half-line originating I
at x in the direction (-a)

u (u(X u= - Xa ,X > 0)

Denote by Fa -F (X) the real valued function
F (W) wax (fx (x, -%a)) :!:

I Il
a

Proposition 1: Let X satisfy
1) X* > 0

2) F k¼
)* a

then u -- u(X*) lies on the "boundary"of P (k) , i.e.

u c bd P (k) y c P*(k) f(x,y)= k, for some xeP]_

Proof: From the hypothesis 2), a x such that

f(x x- X a) = f(x u) k QFD

We now briefly Indicate below (a more detailed study can be found in [9])

how polaroids find their justification and application in non-linear optimiza-

tion problems: the fUllowing results make it possible to solve (in principle) 5

a very broad class of problems using polaroids and the general method outlined

'above.

S. .. -- :•: .... .. ...... " : . . . .. .. . ." ... .. ... ': . . .. i- -• :' • '" • "= :I1



Definition 3: The polaroid P (k) is called complete if P C P (k)

Theorem 2: Let A g6x) max g(x), with g(x) f(x,x) If P*(A) is completexCP

then every optimal solution x of the problem

maximize g(x) subject to xeP

"lies on the %oundary'of P (A)

Prooft Presented in [9).

Proposition 2: Assume f(x,y) quasi-convex in y VxeP ; then P (A) is

a gmplete convex polaroid and any collection of simplices

"Si , JeJ such that S C P (A) VJCJ and P c S J U Si

yields a sufficient optimality condition.

Proof: Convexity of P (A) was entablished in Theorem 1 and completeness

follows from the choice of A ; optimality of x then follows from

r the observation that f(x,y) < A = g(x) , VxeP , yS, VjeJ

and from the assumption P C S . QED

The general method described in the introduction now becomes operational

when the simplices S are constructed as subsets of the polaroids P (k),

because, for k < 0, one has SC c P*(k) c P (A) (a proof is given in [9]);

in practice, the value of k is gradually increased (step-wise), until the

optimal value A is reached. Thus the only problem remaining in the

design of an algorithm is the practical construction of the simplices S
J

2) The Intersection Method

The proposition 1 indicates that the determination of intersection

point reduces to the parametric linearly constrained optimization

process described below:

Find ý > 0 such that F a(• max f (x,x - 'Aa) <k;
XeP

if F ) < k then u = u(W) can be seen to lie in the"interio£' of F*a

Int P* (k) = (y j f(x,y) < k , VxPJ;
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if Fa(•) -k , then u lies on the"boundary'set bd P (k) defined in see-

tion 1 and it is therefore a solution u to the intersection problem.

The polaroid intersection problem therefore can be seen to contain the fol-

lowing two parts:

PI) A Mathematical programming part:

maximize z(x) = f(x,; - ýa) , [ given

subject to xgP

P2) A nat*1inttria A&ArSh problem:

id = max Lx. j Fa(X) <i4] ,

In general neither of these optimizations can be executed exactly and one often

prefers a good approximate solution which is obtained in few computations.

7his approximation, however, must be such that the approximate intersection

ggint U b~longs to the set P (k)

For the problem Fl) this means that one needs an upper bound solution

Ssuch that

Z (x) z z(ý) = CX k
x* P

For the problem P2) this implies Z < X*

We now turn to the important special class of convex polaroid sets, there

the intersectionu problem plays a fundamental role in the construction

of algorithms (sea [21•).

Corolla ... 1.1: If the polaroid function f(x,y) is quasi-convex in

y , VxcP , then VacRn the intersection function F

is quasi-convex in X.

.I M "
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r~pf By definition one has

F (A ) f (X,yin~a VxeP

Let yl I a y 2 Xa, X 9pI+ 1P with p~c[O,11:

3 1 2 1 2
Y x P + (1-0%X ]a p~y + (l-0i.y

for 1-1,2,3 one has by hypothesis Fa) f(x,y) , VxeP ,with

hez: Fa<~~~ (X f ~y') for some x epgfx,:P

_hneF( f(xSy) beqai-ovx 4 n +(0y :S maxe ;f~ and~

<hemaF (Ex) y fF x yX ma =F (% F (X O

a a

Q.E.D.

vT-he-respe3t to theiry ibersectionvxi by ax on-iesoalinedry;te iuo

is cop lectd heX max the fattak) unto ~X tepiil

Paturally hpthesdtriais of an(k intpseciong poin) col alo eP toruls

Fa(0ona skgl otmatioe prai-obleminthe variaestxablshd in th howvrlar

The abdovenneo theoe constbraites ina ael-ndwn pariabest rospctively ses

wihrsett hi nescinb n-iesoa ie(a) h iuto
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well as the separate properties of f (with respect to x and y respec-

si tijely) motivates a separate treatment of the optimization in x and in X

the result of theorem 3 indicates that the parametric search problem P2 can

be solved by increasing stepwise the value of X until X (or < X*)

is reached; each step consistSin a (post-) optimization of the mathematical

programming problem Pl. The resulting algorithrd becomes a non-linear descapt

algorithm of a particular type.

Alpokithm:

-SteR0: Let 0 , i 1 ; choose X > 0 such that

"f(x - a) - k , VxeP , i.e. X a Xla =y P*(k)

Step 1: Solve the (linearly constrained) mathematical programming

problem

P1: max z0 ) f1(x,; - Xia) , s.t. xeP

Stev 2:

2.1: If z max z(x) = k then STOP
xeP

2.2: 1' > k then choose ,, C i-11 I

2.3: If z < k then choose i+1 > i

1) The above algorithmic principle m•rely represents an unpolished set of. guide-

lines; depend ing on the particular problem at hand it can be refined to

increase computational efficiency (see section 3).

2) Clearly the above algorithm neetN not be finite; practicatl", iowever, one

should remember that there usually is no need for an accurate value of X
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thus'ithe exit criterion of step 2 normally will be made to contain a (often

Slarge) "fuzz" factor c > 0 and reads:

I 2.1: If z e [k-¢ , k] then STOP.

and 2.3 is modified accordingly to become

2.3: If • < k-e then choose X >

The algorithm then delivers an approximate intersection point u e P (k) in a

finite number of iterations (this nL.nber clearly depends on the quantity c).

3) LorM EMIz s of Polarpid Intersections

This section presents below a list 6f particular polaroidsI ranked by

order of iscroasing complexity of the corresponding intersection problems.

T
3.1) Bilinear polaroids: f(x,y) = Ax + By + y Cx

[ *
In this case the polaroid P (k) is convex and the deter-

mination of an intersection point \ i. obtained by solving

a parametric linear pro•.am.

max z(x) = B(;-7,a) + (A + (;-Xa)Tc] x

:Problem P1 is an 9rdinary L.P. and the increment of X in

step 2 o.f the algorithm is determined by the preýious optimal

solution ; o? step 1. Because Fa () is known to be pIece-
a

W iooi inear, the optimal value X can be obtained by linear

*Jabra in a finite number of iterations.

2,3.1.1: For the case where C is a symmetric positive definite

matrix Balas has first recognized in [3] the possibil-

ity to use sets he calls. outr-polars to generate
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valid cuttin, planes in integer programming with the

help of narametric linear programming (the outer-

polar is a jeneralizeO polar set (see (15]) and also

a (pecial) polaroid set[9]). The same technique is used

by Balas and Burdet in (4] to solve quadratic concave J

programs.

3.1.2: For indefinite as well as semi-definite quadratic

programsIpolLaroid cuts have been implemented success-

fully in a facial decomposition schema for solving the

general quadratic progrmming problem [21,22].

_31.3: Another application for valid cuts in integer program-

ming is given in [7]; there polaroid cuts are constructed

from a homog3neous (A 0O) bilinear polaroid function

which is centered at the origin (i.e.at X); this

case presents computational advantages because the

optimization problem PI and P2 can be combined in a

aingle linear program (not parametric); indeed, one

can verify by inspection that the problem P1,

Ti.e., max -(Xa Cx) <k
xeP

directly delivers the optimal value

1 max (-aT Cx)
0k xCP

of problem P2.

3.2) The previous bilinear polaroids are a particular case of the fol-

lowing family (with parameter 0e):

f(x,y) - g(X) + a(y-x)T F(X) , where g(x) x T F(x)

(F is a vector valued function).

As an illustration, consider the (quadratic) case where

F(x) = Cx (C n by n symmetric matrix)
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ofm has f(x y)- (1.0) x Cxof y Cx

("Or sM.'Plicity, let us cU~iMS C Positive definite.)

a - : f(x,y) - yT Cx , bilinear polaroid (see 3.1 above)
2ja.3: a - : f(x,y) = -xT Cx + 2yT Cx.

Note that a F(x) 2 Cx-- Vg(x)

Thus we have here an illustration (quadratic) of

the general polaroid function f(xy) g(x) + (y-x)T Vg(x)
The polaroid set P (k) provides here for an analytical

charactertzation of the level set of the maximal convex

<concave) extension of the convex (concave) function g(x)
with ressect to the set P , which has been characterized,

in geometrical terms, by Hoang Tuy in [16].

a: of > 1 : In this case (which contains, in particular,

the previous one 3.2.2), the mathematical programming prob-

lam P1 is a convex quadratic prograiuring problem over a

polyhedral feasible set P and it can be solved by the.Scorresponding classical algorithms.

a 4:As e becomes very large, only points y with
(y-x) = 0 will become tolerable; the Polaroid i!

set therefore simply becomes identical with the
original set P.

3_2_5: a < 1 Here problem P1 is a concave program (i.e.
max(min)imization of a convex (concave) objective

., function).

When 0 < cy < 1 an illustration of the unifying

insight provided by the Polaroid approach in the fields of
,E concave and/or integer prograrmm~ng can be found in [7].
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We describe here a more general situation:

Tasumer that A - 86) - max X Cx ; then, for a small
xl P

enough value c> 0 the polaroid %o ill be the

halfspace(s) determined by the hyperplane(s) supporting P

at the -opta souton) x * lItis is the "largest"

polaroid P in the family, with the desirable property

that I Int P* = (P* - bd P*) , as shown in the proposi-

tion 3 below. Larger values a yield a lover bound for

the intersection parameter X , which can be used as an

approximation; the intersection algorithm could thus conceivably bel~

refined by changing the parameter a (starting with, say,

the L.P. value ey =1 ) and post-optimizing the (new)

problem P2 to find a better value for X ; ultimately this

process determines the intersection parameter with the

polaroid P,(Is)

In integer prograimming, the outer-domain theory (see,

for instance, (61 and [71) indicates that P (a) is the

intersection of a collection of halfspaces, each belonging

to a feasible vertex of the unit cube; decreasing the

parameter a (down from ot 1 )therefore corresponds

to introduciug additional integrality requirement-s into

the linear program obtained in 3,1, see [7].

13,2A.6: a 0 :In this case f(x,y) =g(x) and is independent

of y ; hence P is the whole space whenever

ke f(Q,1A ),and P*0O otherwise.
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___________. ifne (k (y xCx + 0t(y-x) Cx < k,' YxcPl.;j

Assume a > 0 and P C levkg(X), that is:g(x) - xTCx < k, VxcP.

Then P* (k) c PC, (k) if f 1 -- a2"

*2

__oof: Take Yj e bd P (k) and choose x 1eP such that

f~ 1 ay1 l) - xi",1x + &l(y-Xl)U..x. - k

then on eaa (yhaxs)TCx > 0 because 0 < 1 C. .
¶ (Y1 -x) TCx 1

VbTe x2PC-l < k by hypothesis. I

Furthermore y cP,2(k) impl-es 0 .2 -1 as shown below:

xT Cxl + Cr2 (Yl-xl)TCxl x1 Cx1 + atr(Y 1-x 1 )TCx 1 + (Cx 2 "')(Ylxl)Tcx, k

hence (cr2-0 1 ) < 0 must hold true

T T T7s aince x eP and x1  x1 ÷+ clyyl-l)x = IC , with (y-xj) Cx > 0

I*

On the other hand, assu•ming of2 < 1 suppose yl • P* (k)

then 3 x2 C P such that

x2'Cx2 + a2 (y1 -x 2 )T Cx2 = k' > k; x
T k' -x2 Cx2

but (y1 -x2 )T(x 2 > 0 because 0 < C2  T
(yl-x2 ) C 2

*

Hence one obtains from Y* c PC, (k)

T. ~ TT
xTCx2 + Ct2 (Y1 -x2) Cx2 + (a I1 -C 2 ) (yl-x 2 )T Cx2 < k
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thatlib(ov-r) -a 0 most hold because

.TT T.x~ C* 2 + yof x2 > CX2 > k by hypothesis and (y .x) C%2 > 0

But t~his implies ofI o which is contrary to hypothesis; thus

Y1 4 (k) .Q.E.D.

2

One may conclude from proposition 3 that there may be a reward for i6olving

increasingly difficult problems since for small o' the intersection prob-

lem Is of the same order of difficulty as the original (for instance, concave

or integer) problemone is trying to solve with the help of polaroids.

Note that par~ametric linear programs (at = 1) however hold a position

which somw to mak~e them computationally quite attractive in that respect.

L.3Sm&AMggdl This class contains all the previous cases and is charac-

terimed by functions f(x,y) which are linear in y , VxeP ; the con-

Vexity of the corresponding polaroid sets P (k) ie readily verified (see

theorem 1).

* Of course this class may contain a variety of different types of optimiza-

tion problems P1: conkvex, concave, discrete, etc.. .. but linearity in

ymakes it easier to predict adequate increment for X in the algorithm.

One should also note that the convexity of P makes a cutting plane

* approach possible for problems which do not possess convex level sets

of the objective function g(x). An example of this type can be found

in [211 and a general discussion of polar programs is presented in [10].



2.L A tore general class yet is defined by polaroid functions f(x,y)

vhich are merely required to satisfy the hypothesis of theorem I in order

to yield Sonyvj polaroid sets. Here, except for very special functions,

there are no artifices available to render the problem P2 more easily

tractable, and one has to resort to the stepwise incremental method des-

cribed in the algorithm to solve the intersection problem (depending on

the actual function f it may become more or less difficult to determine

adequate increments (Xi+i" i) X)

SOne may also use polaroid sets which are not austmed in advance to be con-

vax; after solving the intersection problems involved by a cutting plane

approach, for instance, one has then to test the validity of the cut; this

task is essentially different from checking a quasi-convex property of

f(x,y): and in sow instances, cuts may a posteriori be easily proved

1011d; when generated from non-convex polaroids, they may also be deeper

than intersection cuts from convex outer-domains.

S.. '---I-, .- -
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